Quantum/classical time-dependent self-consistent field treatment of Ar1HCO inelastic and dissociative scattering

نویسندگان

  • Gregory S. Whittier
  • John C. Light
چکیده

A quantum/classical time-dependent self-consistent field ~Q/C TDSCF! approach is used to simulate the dynamics of collisions of Ar with HCO. We present state-to-state cross sections and thermal rate constants for vibrational transitions. Using this model together with assumptions about the rotational energy transfer and a master equation treatment of the kinetics, the low-pressure thermal rate of collision-induced dissociation ~CID! was calculated over the 300–4000 K temperature range. A comparison with experiment shows good agreement at high temperatures and poor agreement at low temperatures. The high temperature results were sufficient to obtain an Arrhenius expression for the rate that agrees with all experimental results of which we are aware. © 1999 American Institute of Physics. @S0021-9606~99!01808-5#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

ec 2 00 3 Chapter 1 DEPHASING AND DYNAMIC LOCALIZATION IN QUANTUM DOTS

The effects of dynamic localization in a solid-state system – a quantum dot – are considered. The theory of weak dynamic localization is developed for non-interacting electrons in a closed quantum dot under arbitrary time-dependent perturbation and its equivalence to the theory of weak Anderson localization is demonstrated. The dephasing due to inelastic electron scattering is shown to destroy ...

متن کامل

Timedependent approach to transport and scattering in atomic and mesoscopic physics

Transport and scattering phenomena in open quantum-systems with a continuous energy spectrum are conveniently solved using the time-dependent Schrödinger equation. In the timedependent picture, the evolution of an initially localized wave-packet reveals the eigenstates and eigenvalues of the system under consideration. We discuss applications of the wave-packet method in atomic, molecular, and ...

متن کامل

Semiempirical R-matrix theory of low energy electronâ•fiCF3Cl inelastic scattering

We apply a semiempirical R-matrix theory to calculations of vibrational excitation and dissociative attachment in the CF3Cl molecule for electron energies below about 3 eV. We employ two sets of model parameters corresponding to two different forms of the CF3Cl − potential curve. We fi nd that our present, ab initio calculated anion curve gives vibrational excitation and dissociative attachment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999